

Profitbase AS

Profitbase Planner
Customization Patterns

Profitbase

04.05.2023

Version 0.4

Page 2 of 21
 Profitbase Planner Configuration

Content

Content .. 2

Abstract, intended audience and pre-requisites ... 3

EPM Planner Custom Extension Template .. 3

Pattern 1 - Create a new Planner input module extension ... 5

Register new Planner input module extension .. 5
Plan overview interaction .. 6

Create custom financial transactions .. 7
Actions to be performed post version deployment ... 10

Pattern 2 - Create a new module that will follow Planner’s versioning only 11

Pattern 3 – Customize the transaction pipeline and/or FinanceAll dataflow 11

Pattern 4 – Customize assumptions (lookup) measures for the Driver Based module 14

Pattern 5 – use a custom target store for data import .. 16

Pattern 6 – use a custom source for data export .. 16

Pattern 7 – add custom button/row context menu in standard Planner modules 16

Pattern 8 – import transactional plan data from an external source. ... 20

Data Architecture and Extensions .. 21

Date: Version: Changed
by:

Changes:

31.10.2021 0.1 TN Initial content

30.11.2021 0.2 TN Extended for Profitbase Planner 5.1

27.10.2022 0.3 TN Revised for Profitbase Planner 5.2.4

01.06.2023 0.4 TN Revised for Profitbase Planner 5.4.0 (Patterns 3, 7 and
8)

Page 3 of 21
 Profitbase Planner Configuration

Abstract, intended audience and pre-requisites

This document aims to describe common customization patterns and best practices for making
custom extensions to Profitbase Planner and is aimed at implementation partners.

An in-depth knowledge of the Profitbase InVision designer is required.

The following patterns are described:

1. Pattern 1 - Create a new Planner input module extension that will integrate with
Planner’s Plan Overview, produce financial transactions of its own, and follow Planner’s
versioning. A starting template exists, refer to:

2. Pattern 2 - Create a new module that will follow Planner’s versioning only (subset of 1)
and be present in the hamburger menu. A starting template exists, refer to: EPM
Planner Custom Extension Template

3. Pattern 3 – Customize the transaction pipeline. The transaction pipeline for Account,
Personnel or Driver Based modules can be customized. It is, starting from Planner
version 5.1, possible to add a custom sql script to execute pre and/or post the standard
transaction pipeline.

4. Pattern 4 – Customize assumptions (lookup) measures for the Driver Based module,
available starting from Planner 5.1.

5. Pattern 5 – A selection of tables are available as data import targets. If other targets are
needed, creating a synonym for them will add them as options. Available starting from
Planner 5.1

6. Pattern 6 – By default, CPV views are available from the export module. If additional
tables need to be exported, synonyms must be created. Available starting from Planner
5.1

7. Pattern 7 – Add custom button and/or custom row context menu to Planner standard
modules to enable UI integration with custom workbooks for custom input and/or
custom reporting.

8. Pattern 8 – Import transactional plan data to be included in the plan from an external
source.

EPM Planner Custom Extension Template

This is a starter template that can should be used to rapidly set up a custom extension either for
pattern 1 or 2 above.

The custom extension template must be deployed to a solution in which the EPM Planner
package exists already.

The custom extension package is not self-contained as its workbook uses hierarchical filters that
refer to dimensions in EPM Planner.

Once deployed, the following markup changes must therefore be done to the hierarchical filters
that refer to source dimensions that reside in EPM Planner:

Page 4 of 21
 Profitbase Planner Configuration

Replace the ids in yellow with the content ids for the dimensions within EPM Planner with
names as underlined in red in the image above. You will find the id by locating the dimensions
and right-click and select Copy id to clipboard as shown for the Activity dimension below:

Save the markup.

Assign yourself access to the workbook in the custom extension package. This is best done by re-
publishing the workbook access in the solution hosting EPM Planner and the custom extension
package.

Open the workbook by previewing it from the designer as it will not appear in the menu until
the package is part of a process’ content.

There is a basic list of todos listed in the workbook:

Page 5 of 21
 Profitbase Planner Configuration

The following two chapters explain patterns 1 and 2 more in-depth. Note that much of the
Planner integration specific topics are covered by the custom extension template.

Pattern 1 - Create a new Planner input module extension

NOTE: Before creating a new custom Planner input module extension, consider carefully if one
or more driver-based models make up a “good enough” solution as they are supported and
upgraded as part of standard Planner and a custom extension may thus be avoided in the first
place.

NOTE: Any customizations made as additions to the EPM Planner package, should be contained
in separate packages and developed in the solution that acts as the EPM Planner blueprint. This
will allow for access to Planner objects using the @Object notation and any workbooks in the
package that should appear in the hamburger menu can be included in the process content
when creating a new Planner process:

NOTE: Never use Planner objects such as filters, worksheets, setting tables, reports, etc directly
in custom module workbooks. Create custom objects that refer to the data in question.

Register new Planner input module extension

Page 6 of 21
 Profitbase Planner Configuration

A Planner input module extension comes in the form of a workbook and associated store(s) and
worksheet(s).

Input module extensions are registered in @Object[ModuleExtensions,setting].dbObjectName.

This allows for attaching the module to report lines and for Planner to launch the module from
the Plan Overview workbook.

Relevant attributes:

Column Description

ModuleExtensionID The id of the module extension. Naming convention used by Profitbase for standard modules:
Profitbase.EPM.<WorkbookName>. Propose to use <Partner>.EPM.<WorkbookName>

WorkbookID Version specific workbook id (i.e. @Object[WorkbookName].Id). Must be updated post
version deployment to reflect the actual workbook id for the version in question.

WorkbookName The workbook object name as given in the Profitbase InVision designer. NOTE: workbook
names must be unique as there is no type-qualification available for workbooks when using
@Object notation.

InUse Published | Not published (true | false)

ModuleExtensionID_Name Default description.

ModuleExtensionID_Name_NO Description - Norwegian translation

ModuleExtensionID_Name_EN Description - English translation

WorkbookPixelHeight Used when launching module in new window from Plan Overview (integer).

WorkbookPixelWidth Used when launching module in new window from Plan Overview (integer).

WorkbookPixelLeftAdjustment Used when launching module in new window from Plan Overview (integer).

WorkbookPixelTopAdjustment Used when launching module in new window from Plan Overview (integer).

Attributes in bold above are maintainable by the user in the Input settings and administration
workbook:

Plan overview interaction

This part is taken care of in the custom extension template.

The Plan overview workbook will launch the module and use query string variables to represent
the context:

- DepartmentID – Department filter context
- ProjectID – Project filter context
- ActivityID – activity filter context
- FilterChoice – Period filter context
- ReportLineID – Report line context (when launched by clicking a report line)
- MessageBackTo – the WorkbookID for the Plan Overview workbook. If not null, this

should be used for sending messages back to the Plan Overview workbook which listens
for these messages. When sending messages, make sure to limit to CurrentUser or else a
broadcast to all users having the Plan Overview workbook open will take place.

o When data is changed: DirtyFlagRefresh
o After transaction pipeline is completed: RefreshSummary

- Back – indicates whether launched in same window (1) or as new window (0). Used to
activate/deactivate Back button. A click on an active Back button should execute an

Page 7 of 21
 Profitbase Planner Configuration

OpenBrowserWindow with the Plan overview workbook as the target including the
query string parameters except for ReportLineID, MessageBackTo and Back (query string
parameter values may have changed if user has changed the context while in module).

NOTE: The URL may or may not contain certain variables, depending on the context. The custom
workbook should handle situations where certain query string variables are not provided.

The relevant filter sources:

- Department filter: @Object[Department,dim].dbObjectName
- Project filter(*): @Object[Project,dim].dbObjectName
- Activity filter(*): @Object[Activity,dim].dbObjectName
- Period filter: @Object[FctPeriodFilterSource,view].dbObjectName

(*): the filters are optional, naming and visibility controlled in:
@Object[InputFilters,setting].dbObjectName.

Other issues to consider:

- IsAppReadonly() – to control availability of non-grid actions such as buttons
(enable/disable) when a version is closed and thus editable.

- User-editable attributes in @Object[ModuleExtensions,setting].dbObjectName such as
name (set using SetAppTitle()) and Published. Standard Planner input modules will avoid
loading filters, enabling buttons and loading data when a module is not published. A
message is displayed:

The text code for the message is: NoAccess

- Integration with New Task form (separate doc)
- If Workflow is to be used, a separate workflow with identical states to the Planner one

should be created in the custom module as any interaction with the Planner workflow
will not survive an upgrade. In such cases the standard relaying of state from Plan
Overview to its modules when changing the state from Plan Overview will not be
supported for custom modules.

Create custom financial transactions

Custom financial transactions are created in @Object[pbTransdataSourceCM,store].dbObjectName.

Column Description

LegalEntityID Legal entity dimension id

DepartmentID Department dimension id

DepartmentID_DCD Department context dimension id

AccountID Account dimension id

ProductID Product dimension id

MarketID Market dimension id

SupplierID Supplier dimension id

EmployeeID Employee dimension id

ProjectID Project dimension id

ActivityID Activity dimension id

Dim1 Free dimension 1 dimension id

Page 8 of 21
 Profitbase Planner Configuration

Dim2 Free dimension 2 dimension id

Dim3 Free dimension 3 dimension id

Dim4 Free dimension 4 dimension id

CPLegalEntityID Counterparty legal entity id – used for intercompany trade

CPDepartmentID Counterparty department id – used for intercompany trade

CPAccountIDOvr Counterparty account id – used for intercompany trade

CategoryID Free dimension category dimension id

TextInpID Free dimension text id dimension id

Transdate Transaction date time

Amount Amount in CurrencyForeignID

CurrencyForeignID Currency id identifying the amount

TransTypeID 1 (regular transaction)

Qty Optional quantity

AccTypeID PL (Profit Loss)

ModuleExtensionID ID uniquely identifying the module’s data

SYS_OriginID Used by Profitbase InVision when using the transaction pipeline

SYS_OriginColumnID Used by Profitbase InVision when using the transaction pipeline

SYS_TransGeneratorID Used by Profitbase InVision when using the transaction pipeline

SYS_OriginRowIdentity Used by Profitbase InVision when using the transaction pipeline

SYS_DataSetID Obsolete

WithholdTaxPctOvr Optional financial setting value override

VATPctOvr Optional financial setting value override

VacationPayPctOvr Optional financial setting value override

SpecialTaxCOvr Optional financial setting value override

SpecialTaxBOvr Optional financial setting value override

SpecialTaxAOvr Optional financial setting value override

ShrinkagePctOvr Optional financial setting value override

ReturnPctOvr Optional financial setting value override

PriceOvr Optional financial setting value override

PensionEmployerPctOvr Optional financial setting value override

PensionEmployeesPctOvr Optional financial setting value override

ObsolescencePctOvr Optional financial setting value override

GrossMarginPctOvr Optional financial setting value override

FreightOutPctOvr Optional financial setting value override

FreightInPctOvr Optional financial setting value override

EmployerTaxPctOvr Optional financial setting value override

DiscountPeriodicPctOvr Optional financial setting value override

DiscountPctOvr Optional financial setting value override

DaysOfCreditOvr Optional financial setting value override

CostPriceOvr Optional financial setting value override

CogsPctOvr Optional financial setting value override

CashPctOvr Optional financial setting value override

BadDebtPctOvr Optional financial setting value override

The built-in Profitbase InVision Transaction pipeline function (using Distributer, Producer and
Mapper functions) can be used, or the data can be scripted. If scripting is used, the existing slice
of data must be deleted explicitly before re-inserting the slice of data.

The data context defines the slice of data and must as a minimum include the
ModuleExtensionID identifying data from the custom module. Normally, department is also part
of the data context, making it possible to slice the data per module and department. For data
context purposes, the DepartmentID_DCD column is used.

The following part is taken care of in the custom extension template:

Page 9 of 21
 Profitbase Planner Configuration

In a transaction pipeline dataflow, the following two scripts must be executed post the creation
of the transactions – they involve piping the data through to the PL (Profit & Loss) and AFP
(preliminary social cost generation) stages:

- @Object[Reload pbTransdataPLSourceCM,script].Id

- @Object[Reload pbTransdataPLSourceAFP from pbTransdataPLSourceCM,script].Id

Page 10 of 21
 Profitbase Planner Configuration

Actions to be performed post version deployment

This section is also relevant for Pattern 2 - Create a new module that will follow Planner’s
versioning only.

The custom package should have its own post version deployment dataflow:

This dataflow should be able to take actions based on the following package variables that are
set depending on the user’s selections made when creating a new version:

- Profitbase_EPM_Planner_PostDeploymentAction

o RollFwd (*)
o Init (#)
o Nothing (pure copy, nothing to be done)

- (*) Profitbase_EPM_Planner_RollOverDelta
o Number of months to roll forward

- (#) Profitbase_EPM_Planner_StoreReferenceDate

o New store reference date

The custom package is responsible for its own initializing and roll forward operations.

If the customization is a module extension (i.e. exists in @Object[ModuleExtensions,
setting].dbObjectName), the WorkbookID column must be updated to reflect the actual
WorkbookID (i.e. @Object[<WorkbookName>].Id).

If Workbook(s) are to be “go to” workbook options when creating new tasks, they must be
registered in SYN_Common_Workbook in the correct process/version context:

Column Description

WorkbookID The workbookid found as @Object[<workbookname>].Id

WorkbookName The default title of the workbook

WorkbookName_EN The English title of the workbook

WorkbookName_NO The Norwegian title of the workbook

MasterWorkbookName The workbook object name as found in the Profitbase InVision designer. This is used for
Process tasks which are defined outside of a versioned context.

ProcessID The current process id as found in [dbo].[SYS_WorkProcessVersions] for
WorkProcessVersionID = '@CurrentWorkProcessVersionID'

Page 11 of 21
 Profitbase Planner Configuration

VersionID '@CurrentWorkProcessVersionID'

WorkbookURL Same as WorkbookID

Editable True

Versioned True

ApplicationID EPMPlanner

Note that this part is taken care of in the custom extension template but will require some
adaptation. The following dataflow is attached to the custom extension package as a After
Version Deployed dataflow:

It reads the relevant Planner package properties and splits into two control flows depending on
the PostDeploymentAction package property:

Pattern 2 - Create a new module that will follow Planner’s versioning only

This should be a subset of pattern 1, refer to Actions to be performed post version deployment

Pattern 3 – Customize the transaction pipeline and/or FinanceAll dataflow

The transaction pipeline for the Account, Personnel and Driver based modules can be
customized by adding a sql script that executes prior to (PRE) and/or after (POST) the standard
transaction pipeline of the module.

It is possible to register a custom script per pipeline PRE and/or POST. Scripts registered as
object names as defined in the Profitbase InVisiondesigner which are evaluated to version
specific object ids at run-time.

Page 12 of 21
 Profitbase Planner Configuration

Table for registering custom scripts: @Object[CustomPipelineScripts,setting].dbObjectName.
There is no user interface, so content will have to be scripted or input using the Profitbase
InVision designer:

Scripts must use context variables:

- @ModuleExtensionID – id defining the module or model
- @DepartmentID – selected filter value (id) in the department filter (123XYZZZYX321

outside of context)
- @DepartmentColumnName * - Column name in wide dimension that represents the

selected filter value, default is DepartmentID (leaf).
- @ActivityID * – selected filter value (id) in the department filter (123XYZZZYX321

outside of context or if dimension is not used)
- @ActivityColumnName * - Column name in wide dimension that represents the selected

filter value, default is ActivityID (leaf).
- @ProjectID * – selected filter value (id) in the department filter (123XYZZZYX321 outside

of context or if dimension is not used)
- @ProjectColumnName * - Column name in wide dimension that represents the selected

filter value, default is ProjectID (leaf).

*From Planner 5.2.4, with the introduction of multi-department input, the context slice is
dynamic and script must therefore handle situations where context is defined at higher filter
levels, for example @DepartmentColumnName = ‘L2’ And @DepartmentID = ‘Norway’ when
pipeline is triggered from a workbook. It is suggested that the script makes use of dimension
slicers that is used to control the context, for example:

The slicer table should be joined into any select that delimits the context.

If the registered script does not exist in current version context, no error message is given as the
custom step is ignored.

Scripts should never be created in EPM Planner package. Should be created in a separate custom
package co-existing with EPM Planner. A template script with variables can be copied from EPM
Planner:

Page 13 of 21
 Profitbase Planner Configuration

From Planner 5.4.0 the FinanceAll dataflows can also be customized with PRE and POST scripts
(no parameters).

The FinanceAll dataflows (FinanceAllBaseline and FinanceAllScenario) source transactions from
input modules and executes financial engines producing a plan ledger.

In some cases, it may be desirable to introduce custom logic before the financial engines starts
and after the financial engines finish.

Use cases may be to add data to price list from say a driver-based model before if simulation on
price is required and allocation (non-cash) of cost from admin to production departments after
simulation is finished.

This can be done by adding custom scripts and registering these in the CustomPipelineScripts
table in the same way as for transaction pipelines:

The PRE script executes before the start of the first financial engine:

https://support.profitbase.com/solutions/planner/uploads/0675a714eedd07889c744a489b5afbd7/image.png

Page 14 of 21
 Profitbase Planner Configuration

The POST script executes after the finish of the last financial engine and prior to the static
feedback loop to the Plan overview workbook and the aggregation of report data:

Pattern 4 – Customize assumptions (lookup) measures for the Driver Based module

The standard assumption table for the driver-based module is found in the Driver based
modelling workbook:

Page 15 of 21
 Profitbase Planner Configuration

Sometimes it may be required to customize the source for assumptions. This can be done by
creating a custom view adhering to the internal format of the standard assumption table and
registering this view as an override in the Base settings table found in the Input Settings and
Administration workbook settingID DriverBasedCustomAssumptionView:

Such a view should never be created in EPM Planner package. Should be created in a separate
custom package co-existing with EPM Planner.

The view will have to be common for all driver-based models, i.e. either you customize or you
don't. However, it's a good idea to combine with standard setting as described below so that
only the assumptions you need to customize are custom.

View need to conform strictly to the format for FctSalesInputAssumptions, including
PBRowIdentity. Example view established in custom extension package:

Page 16 of 21
 Profitbase Planner Configuration

Rules that apply:

• The custom view can combine the standard assumption table
(@Object[FctSalesInputAssumptions,setting].dbObjectName and custom sql but any one
measure can EITHER have its assumption values from the standard table or custom sql.

* can be used for indicating all as with ranked input. This can be used to avoid the
custom values to explode if for example certain dimensions are not used and the
assumption values apply across all dimension value combinations for that
dimension.

• For any custom assumption values where all values and specific values are used,
PBRowidentity and Pri (rank/specificity) field logic must be used, i.e. more specific
values have higher Pri (rank/specificity) and the different rows for that specific
assumption must have unique PBRowIdentity values.

Pattern 5 – use a custom target store for data import

Pattern 6 – use a custom source for data export

Pattern 7 – add custom button/row context menu in standard Planner modules

From Planner 5.4.0, it is possible to enable and configure a custom button and/or a custom row
context menu in modules Account, Personnel, Driver Based and the Plan overview workbook.
The purpose is to enable a UI integration to custom workbooks and pass the context from the
standard workbook to the custom workbook without “breaking” the standard.

As an example, a custom workbook offering a drill-to-detail of ledger data may be configured as
a custom row context menu receiving contextual information from the appropriate row such as
department, account, project and so on that may be used to filter a custom report.

This is set up using the Profitbase InVision designer in the setting table ModuleExtensions:

https://support.profitbase.com/solutions/planner/uploads/3a00dc890b5b69884e4ff75f76d82dd1/image.png

Page 17 of 21
 Profitbase Planner Configuration

While not a module, it is also supported to add a custom button and a custom row context
menu to the Plan Overview workbook. Details stored in separate columns in the
ModuleExtensions table (NOTE: Row for ModuleExtensionID =
Profitbase.EPM.AccountWorkbook taken into account):

• Custbtn1Enabled - (true | false, default false). If false, the button is hidden

• CustBtn1LaunchToWorkbookName - the workbook name as given in the invision
designer. Planner will evaluate the workbook id based on the version context in which it
is called. The workbook must exist in the same version context as the calling workbook
(e.g. a custom package parallel to the Planner package.

• CustBtn1QSP - an optional part of the query string that may hold context in addition to
the standard context provided by Planner. This must be specified in the form
parameter1=value1¶meter2=value2 (note the ampersand for separating multiple
custom parameters).

• CustRowContextMnu1Enabled (true | false, default false). If false, the row context
menu is inactive.

• CustRowContextMnu1LaunchToWorkbookName - the workbook name as given in the
invision designer. Planner will evaluate the workbook id based on the version context in
which it is called. The workbook must exist in the same version context as the calling
workbook (e.g. a custom package parallel to the Planner package.

• CustRowContextMnu1QSP - an optional part of the query string that may hold context
in addition to the standard context provided by Planner. This must be specified in the
form parameter1=value1¶meter2=value2 (note the ampersand for separating
multiple custom parameters).

Context

• Custom button - Department, Project and Activity filter values, the workbook id of the
workbook from which the custom button is clicked and an optional query string context.
Module specific context include the Account filter context is provided for the Account

Page 18 of 21
 Profitbase Planner Configuration

module. For Personnel, the Employee filter context is provided. For Driver based, the
Product and Market filter context is provided.

Button is placed:

• Custom row context menu - The row context is provided, i.e. all values of relevant input
dimensional context columns such as DepartmentID, ProjectID, ActivityID,
CPLegalEntityID and so on. Module specific context include, AccountID for the Account
module, EmployeeID for the Personnel module, ProductID, MarketID and SupplierID for
the driver based module.

• Custom row context menu is available on right-click on Project and Activity dimension
columns of main input fheet. Module specific additions include Account column for the
Account module, Employee column for the Personnel module and Product and Market
columns for the driver-based module.

Titles and translations

The following localization text codes is referenced:

Account module:

Personnel module:

Driver based module (generic texts):

Page 19 of 21
 Profitbase Planner Configuration

For the custom button, driver-based model-specific texts may be added by adding a localization
of the form <ModuleExtensionID>_CustBtn1 for example MyModel_CustBtn1 for a model with
ModuleExtensionID = MyModel.

Note that model-specific texts are not supported for the custom row context menu.

Plan overview:

Size and positioning of custom workbook when called from standard modules

The OpenBrowserWindow command is used to open the custom workbooks. It is possible to
control the height, width, left and top adjustments in pixels by setting the following values in the
setting table ModuleExtensions:

For Account, Personnel and Driver based modules:

For Plan overview:

The values are pixels and the data type is therefore integer.

Page 20 of 21
 Profitbase Planner Configuration

Communication back to caller

The workbookID of the caller is part of the query string to the custom workbook as the
“MessageBackTo” variable. This value can be stored in a workbook variable in the custom
workbook like this:

@Var[MessageBackTo] = @Var[QSP:: MessageBackTo];

A SendMessage event may be issued by the custom workbook to signal to the calling
module/workbook to refresh.

The Plan overview workbook (InputReportWorkbook) has a “RefreshSummary” message
received event that refreshes the summary page.

The Account, Personnel and Driver based modules (AccountWorkbook, PersonnelWorkbook and
DriverBasedWorkbook) has an “RefreshInputPage” message received event that refreshed the
main input page.

Example of a SendMessage instruction back to the calling module:

ConfigureMessage(@Var[MessageBackTo], SYS.CurrentUserName, "RefreshInputPage", '');

Pattern 8 – import transactional plan data from an external source.

In some cases plan data from external sources need to be included in the plan without involving
any input, i.e. to be imported as transactional data to the plan.

In EPM Planner, the transaction store @Object[pbTransdataSourceCM,store].dbObjectName can
be used for this.

Data should be identified by a ModuleExtensionID.

Use the following pattern:

Set up a standard Data Import job to EPM Datamart destination store
pbTransdataSourceCMExternal (identified by synonym
SYN_Datamart_pbTransdataSourceCMExternal).

This will import the data to EPM Datamart.

To import the data to an EPM Planner version, create an Operation that contains the following
sql script steps:

1. ImportFrompbTransdataSourceCMExternal
Parameter: @ModuleExtensionID, @DepartmentID = 123XYZZZYX321

2. Reload pbTransdataPLSourceCM
Parameters: @ModuleExtensionID, @DepartmentID = 123XYZZZYX321,
@SYS_OriginID = 123XYZZZYX321

3. Reload pbTransdataPLSourceAFP from pbTransdataPLSourceCM (optional)
Parameters: @ModuleExtensionID, @DepartmentID = 123XYZZZYX321

Page 21 of 21
 Profitbase Planner Configuration

Scripts have parameters that must be set. Note that when adding parameter values to the
Operation step, no quotes should be used as shown in the examples abov.

Note that @ModuleExtensionID should always be set to identify the set of data imported.

Parameter value 123XYZZZYX321 means all.

For a description of the various data fields and the requirements related to the fields, please
refer to Create custom financial transactions

Data Architecture and Extensions

When creating extensions you need to know where to find data and where to put data and using
sources and targets that will be present and most stable over version upgrades. The picture
below show the main dataflow in Profitbase Planner.

This presentation contains figures that show how the integration describe above will connect to
the rest of Planner.

Profitbase Planner Architecture.pptx

Recommendation summary:

Use pbTransdataSourceCM when creating and inserting finance source transactions.

Use pbTransdataPL when presenting Profit & Loss information – typically in workbook report.

Use ReportAccountByMonth whenever you need to do postprocessing such as allocations and
redistribution for reporting purposes. Use extract, process and present fi possible. Avoid doing
deletes. Remember that “Finance All” will replace the total content.

Using table and views – try to use tables/views with SYN or CPV.

For dimensions there will be a shared dimension in datamart and a local dimension in versioned
solution. Access these using @Object[Dimension, Dimension].DbObjectName to get the local
and SYN_Dimension to get the shared dimension.

Avoid using other tables and views. If you have to: It is recommended to use a view as an
interface to protect the implementation against changes and help document this dependency.

It is important to minimize external reference points to minimize risk that an upgrade will break
compatibility.

Be aware of the content in this document which will be updated and extended with new
patterns.

https://profitbase.sharepoint.com/:p:/s/FRSv2/EazLHPha5ztKjTKhBmx4DZABVlHQmzACIklAqaH49pQGeQ?e=x2CKhc

