profifbase

Profitbase AS

Profitbase Planner

Customization Patterns

Profitbase

04.05.2023

Version 0.4

Content

L0 0 1 =T 1) N 2
Abstract, intended audience and pre-requIsites......cccccceiiiiiiiiiiiiiiiiiii e 3
EPM Planner Custom Extension Template..........eeeeeeeeeeeeeeeeeeeeeeeeeeeemeeeeeeeeeeeeeseessesssssssssssssssssssssssssssssnns 3
Pattern 1 - Create a new Planner input module eXtensioneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeseseseenee. 5
Register new Planner input module @XtENSIONcccueeeueeiieieiieiieeeeeseeee et 5
Plan OVerviEW INtEraCiONciiiiiiiie ettt sttt et e ae e b e sanesneas 6
Create custom finaNCial trANSACHIONScoeueeeiueeeieiiieeeeesee ettt 7
Actions to be performed post version deploymMentccueeccueeeecieeeeeciieeecceeeeseeeeeceeeeeraea e sreeens 10
Pattern 2 - Create a new module that will follow Planner’s versioning only.........ccceeeeeeeeeeeeeeeeeeennnee. 11
Pattern 3 — Customize the transaction pipeline and/or FinanceAll dataflowccccccveevreeerecreennnnne 11
Pattern 4 — Customize assumptions (lookup) measures for the Driver Based module....................... 14
Pattern 5 — use a custom target store for data import............eeeeeeeeeeeeeeneennenneeneeeeeeeeeesssesseesssssssssaee. 16
Pattern 6 — use a custom source for data eXport........ccceeiiiiieiiiinniiiinn s 16
Pattern 7 — add custom button/row context menu in standard Planner modules.........ccccccceeeevrunennens 16
Pattern 8 — import transactional plan data from an external source.ceeeeeeeeeeeeeeennnnnnenneeneenenne 20
Data Architecture and EXEENSIONScciveveeiiiiieiiiiiieniiiineeeiiees st ssssse s ssssn e s sase e ssssasesssnns 21

Version: Changed Changes:

by:
31.10.2021 0.1 TN Initial content
30.11.2021 0.2 TN Extended for Profitbase Planner 5.1
27.10.2022 0.3 TN Revised for Profitbase Planner 5.2.4
01.06.2023 0.4 TN Revised for Profitbase Planner 5.4.0 (Patterns 3, 7 and
8)

Page 2 of 21
Profitbase Planner Configuration

Abstract, intended audience and pre-requisites

This document aims to describe common customization patterns and best practices for making
custom extensions to Profitbase Planner and is aimed at implementation partners.

An in-depth knowledge of the Profitbase InVision designer is required.
The following patterns are described:

1. Pattern 1 - Create a new Planner input module extension that will integrate with
Planner’s Plan Overview, produce financial transactions of its own, and follow Planner’s
versioning. A starting template exists, refer to:

2. Pattern 2 - Create a new module that will follow Planner’s versioning only (subset of 1)
and be present in the hamburger menu. A starting template exists, refer to: EPM
Planner Custom Extension Template

3. Pattern 3 — Customize the transaction pipeline. The transaction pipeline for Account,
Personnel or Driver Based modules can be customized. It is, starting from Planner
version 5.1, possible to add a custom sql script to execute pre and/or post the standard
transaction pipeline.

4. Pattern 4 — Customize assumptions (lookup) measures for the Driver Based module,
available starting from Planner 5.1.

5. Pattern 5 — A selection of tables are available as data import targets. If other targets are
needed, creating a synonym for them will add them as options. Available starting from
Planner 5.1

6. Pattern 6 — By default, CPV views are available from the export module. If additional
tables need to be exported, synonyms must be created. Available starting from Planner
5.1

7. Pattern 7 — Add custom button and/or custom row context menu to Planner standard
modules to enable Ul integration with custom workbooks for custom input and/or
custom reporting.

8. Pattern 8 — Import transactional plan data to be included in the plan from an external
source.

EPM Planner Custom Extension Template

This is a starter template that can should be used to rapidly set up a custom extension either for
pattern 1 or 2 above.

The custom extension template must be deployed to a solution in which the EPM Planner
package exists already.

The custom extension package is not self-contained as its workbook uses hierarchical filters that
refer to dimensions in EPM Planner.

Once deployed, the following markup changes must therefore be done to the hierarchical filters
that refer to source dimensions that reside in EPM Planner:

Page 3 of 21
Profitbase Planner Configuration

FILTERS MARKUP FROPERTIES

" 116d300e-8453-440-913- 26130 2ee1a81" 7 iLte-Honen"ERVPLannerCustontxtension Praject™>

=“3058506-fat3-4320-b204-FeUOOSFIITa" Filteriamza ERHe,

£a"36c35531 4860 4163-8128-510048R045 " 7 L1t hsnea"EPHPlanRerCUstOREXt Enzin Atiidty s

Replace the ids in yellow with the content ids for the dimensions within EPM Planner with
names as underlined in red in the image above. You will find the id by locating the dimensions
and right-click and select Copy id to clipboard as shown for the Activity dimension below:

Save the markup.

Assign yourself access to the workbook in the custom extension package. This is best done by re-
publishing the workbook access in the solution hosting EPM Planner and the custom extension
package.

Open the workbook by previewing it from the designer as it will not appear in the menu until
the package is part of a process’ content.

v & T3 EPM Planner, Version = 2022
* o Content
v & [EPM Planner Custom Extension

¥ @ ‘| Custom Input Module Extension

| & M EPMPIannerCustomExtensionWorkbook

L ‘I"T EPMPlannerCustomExtensionFilter

» & I Transaction pipeline

There is a basic list of todos listed in the workbook:

Page 4 of 21
Profitbase Planner Configuration

TO DO list:

1. Set the @Var[ModuleExtension|D] variable value in Workbook load, action DefaultPre. NOTE naming convention Partner.EPM.WorkbookMame
nsert r to @Var[ModuleExtensions, setting).dbObjectName with new ModuleExtension
. Add store and worksheet
Modify pipeline dataflow - add step(s) to pipe data to pbTransdataSourceCM
n worksheet, add On data modified event:
[HasUnsavedChanges] = true:
b. Execute expression LBL_SaveDataWarning -= RemoveCssClass{hidden)AddCssClass(highlight);
. Enable Save button
©. Add Filter selection changed Load actions
7. Add Save button Save action and Refresh button Refresh action.

[T SN N

The following two chapters explain patterns 1 and 2 more in-depth. Note that much of the
Planner integration specific topics are covered by the custom extension template.

Pattern 1 - Create a new Planner input module extension

NOTE: Before creating a new custom Planner input module extension, consider carefully if one
or more driver-based models make up a “good enough” solution as they are supported and
upgraded as part of standard Planner and a custom extension may thus be avoided in the first
place.

NOTE: Any customizations made as additions to the EPM Planner package, should be contained
in separate packages and developed in the solution that acts as the EPM Planner blueprint. This
will allow for access to Planner objects using the eobject notation and any workbooks in the
package that should appear in the hamburger menu can be included in the process content
when creating a new Planner process:

= \Version Manager

Processes and versions Version properties

WORK PROCESSES + ® 5.0.0.2 Properties Content

~ Budget « Q) NO EDIT EPM Planner Master, Version = 5.00.1, Version = 5002

v () EPM Planner (50.0)

Configuration (1D Input Settings and Admininstration

> Consolidation

~ Forecast
Versions. (1D Opening Balance

Configuration (1 Account Plan Proposal

(1 Finance Reports
(1) Report Setup

(1 Sourc

(1] Finance Settings
(D) Finance Simulation
(1) CapExiorkbook
~ [) PBC Planner TopDown (1.0.0)

(1) TopDoun

NOTE: Never use Planner objects such as filters, worksheets, setting tables, reports, etc directly
in custom module workbooks. Create custom objects that refer to the data in question.

Register new Planner input module extension

Page 5 of 21
Profitbase Planner Configuration

A Planner input module extension comes in the form of a workbook and associated store(s) and

worksheet(s).

Input module extensions are registered in @object [ModuleExtensions, setting] .dbObjectName.

This allows for attaching the module to report lines and for Planner to launch the module from
the Plan Overview workbook.

Relevant attributes:

Column

Description

ModuleExtensionID

The id of the module extension. Naming convention used by Profitbase for standard modules:
Profitbase.EPM.<WorkbookName>. Propose to use <Partner>.EPM.<WorkbookName>

WorkbookID Version specific workbook id (i.e. @Object[WorkbookName].ld). Must be updated post
version deployment to reflect the actual workbook id for the version in question.

WorkbookName The workbook object name as given in the Profitbase InVision designer. NOTE: workbook
names must be unique as there is no type-qualification available for workbooks when using
@0Object notation.

InUse Published | Not published (true | false)

ModuleExtensionID_Name

Default description.

ModuleExtensionID_Name_NO

Description - Norwegian translation

ModuleExtensionlD_Name_EN

Description - English translation

WorkbookPixelHeight

Used when launching module in new window from Plan Overview (integer).

WorkbookPixelWidth

Used when launching module in new window from Plan Overview (integer).

WorkbookPixelLeftAdjustment

Used when launching module in new window from Plan Overview (integer).

WorkbookPixelTopAdjustment

Used when launching module in new window from Plan Overview (integer).

Attributes in bold above are maintainable by the user in the Input settings and administration

workbook:

Input modules

Input module

B owon =

Published

(<R < <N <]

Description Description EN Description NO Comment

Account Account Konto

Personnel Personnel Personell

CapEx CapEx Investeringer

Loan Loan Lan

Plan overview interaction

This part is taken care of in the custom extension template.

The Plan overview workbook will launch the module and use query string variables to represent

the context:

- DepartmentID — Department filter context
- ProjectID — Project filter context
- ActivitylD — activity filter context
- FilterChoice — Period filter context
- ReportLinelD — Report line context (when launched by clicking a report line)
- MessageBackTo — the WorkbookID for the Plan Overview workbook. If not null, this
should be used for sending messages back to the Plan Overview workbook which listens
for these messages. When sending messages, make sure to limit to CurrentUser or else a
broadcast to all users having the Plan Overview workbook open will take place.
o When data is changed: DirtyFlagRefresh
o After transaction pipeline is completed: RefreshSummary
- Back - indicates whether launched in same window (1) or as new window (0). Used to
activate/deactivate Back button. A click on an active Back button should execute an

Page 6 of 21
Profitbase Planner Configuration

OpenBrowserWindow with the Plan overview workbook as the target including the
query string parameters except for ReportLinelD, MessageBackTo and Back (query string
parameter values may have changed if user has changed the context while in module).

NOTE: The URL may or may not contain certain variables, depending on the context. The custom
workbook should handle situations where certain query string variables are not provided.

The relevant filter sources:

(*):

Department filter: @object [Department, dim] . dbObjectName
Project filter(*): eobject [Project,dim] .dbObjectName

Activity filter(*): @Object [Activity,dim] .dbObjectName

Period filter: @Object[FctPeriodFilterSource, view] .dbObjectName

the filters are optional, naming and visibility controlled in:

@Object[InputFilters, setting] .dbObjectName.

Other issues to consider:

IsAppReadonly() — to control availability of non-grid actions such as buttons
(enable/disable) when a version is closed and thus editable.

User-editable attributes in @0bject [ModuleExtensions, setting] .dbObjectName such as
name (set using SetAppTitle()) and Published. Standard Planner input modules will avoid
loading filters, enabling buttons and loading data when a module is not published. A
message is displayed:

= Forecast * 5.0.0.5 | Account

Account Details Supporting Details

wdag g

The text code for the message is: NoAccess

Integration with New Task form (separate doc)

If Workflow is to be used, a separate workflow with identical states to the Planner one
should be created in the custom module as any interaction with the Planner workflow
will not survive an upgrade. In such cases the standard relaying of state from Plan
Overview to its modules when changing the state from Plan Overview will not be
supported for custom modules.

Create custom financial transactions

Custom financial transactions are created in eobject [pbTransdataSourceCM, store] . dbObjectName.

Column Description

LegalEntityID Legal entity dimension id
DepartmentID Department dimension id
DepartmentID_DCD Department context dimension id
AccountID Account dimension id
ProductID Product dimension id
MarketID Market dimension id
SupplierlD Supplier dimension id
EmployeelD Employee dimension id
ProjectlD Project dimension id
ActivitylD Activity dimension id

Dim1 Free dimension 1 dimension id

Page 7 of 21
Profitbase Planner Configuration

Dim2 Free dimension 2 dimension id
Dim3 Free dimension 3 dimension id
Dim4 Free dimension 4 dimension id

CPLegalEntitylD

Counterparty legal entity id — used for intercompany trade

CPDepartmentID

Counterparty department id — used for intercompany trade

CPAccountIDOvr

Counterparty account id — used for intercompany trade

CategoryID Free dimension category dimension id
TextlnpID Free dimension text id dimension id
Transdate Transaction date time

Amount Amount in CurrencyForeignl|D

CurrencyForeignID

Currency id identifying the amount

TransTypelD

1 (regular transaction)

Qty Optional quantity

AccTypelD PL (Profit Loss)

ModuleExtensionlD ID uniquely identifying the module’s data

SYS_OriginID Used by Profitbase InVision when using the transaction pipeline

SYS_OriginColumnID

Used by Profitbase InVision when using the transaction pipeline

SYS_TransGeneratorID

Used by Profitbase InVision when using the transaction pipeline

SYS_OriginRowldentity

Used by Profitbase InVision when using the transaction pipeline

SYS_DataSetID

Obsolete

WithholdTaxPctOvr Optional financial setting value override
VATPctOvr Optional financial setting value override
VacationPayPctOvr Optional financial setting value override
SpecialTaxCOvr Optional financial setting value override
SpecialTaxBOvr Optional financial setting value override
SpecialTaxAOvr Optional financial setting value override
ShrinkagePctOvr Optional financial setting value override
ReturnPctOvr Optional financial setting value override
PriceOvr Optional financial setting value override

PensionEmployerPctOvr

Optional financial setting value override

PensionEmployeesPctOvr

Optional financial setting value override

ObsolescencePctOvr

Optional financial setting value override

GrossMarginPctOvr

Optional financial setting value override

FreightOutPctOvr

Optional financial setting value override

FreightInPctOvr

Optional financial setting value override

EmployerTaxPctOvr

Optional financial setting value override

DiscountPeriodicPctOvr

Optional financial setting value override

DiscountPctOvr

Optional financial setting value override

DaysOfCreditOvr Optional financial setting value override
CostPriceOvr Optional financial setting value override
CogsPctOvr Optional financial setting value override
CashPctOvr Optional financial setting value override
BadDebtPctOvr Optional financial setting value override

The built-in Profitbase InVision Transaction pipeline function (using Distributer, Producer and
Mapper functions) can be used, or the data can be scripted. If scripting is used, the existing slice

of data must be deleted explicitly before re-inserting the slice of data.

& This object is currently not checked out for edit. Any changes you make, will not be saved.

SCHEMA SOURCE MAPPING CHANGE TRACKING TIME FRAME CORESET ROLLOVER DATA UPDATE TRANSACTION PIPELINE DATAPOOL MARKUP PROPERTIES REFERENCES

Transaction Pipeline

Distributer Producer Mapper

The data context defines the slice of data and must as a minimum include the
ModuleExtensionID identifying data from the custom module. Normally, department is also part
of the data context, making it possible to slice the data per module and department. For data

context purposes, the DepartmentID_DCD column is used.

The following part is taken care of in the custom extension template:

Profitbase Planner Configuration

In a transaction pipeline dataflow, the following two scripts must be executed post the creation
of the transactions — they involve piping the data through to the PL (Profit & Loss) and AFP
(preliminary social cost generation) stages:

- @Object [Reload pbTransdataPLSourceCM, script].Id
- @Object [Reload pbTransdataPLSourceAFP from pbTransdataPLSourceCM, script].Id

Thi ok checked out for edit. Any changes you make, willnat be saved,

rently
DESIGN MARKUP PROPERTIES REFERENCES

Page 9 of 21
Profitbase Planner Configuration

Actions to be performed post version deployment

This section is also relevant for Pattern 2 - Create a new module that will follow Planner’s
versioning only.

The custom package should have its own post version deployment dataflow:

@ EPM Planner B FctAcclnput {T Reload pbTransdataPLSourceAFP from

ad pbTransdatal =4 om pbTransdataPL5

G This object is currently not checked out for edit. Any changes you make, will not be saved.
DEPLOYMENT PACKAGE PROPERTIES WORKPROCESS MARKUP PROPERTIES

Work Process

Specify Data Flow(s) to run when the Work Process Version enters a state.

After Version Deployed (Optional)
Data Flow to run after a Work Process Version has been Deployed

VersionPostDeployment

After Version Opened (Optional)
Data Flow to run after a Work Process Version has been Opened

VersionPostOpening

After Version Closed (Optional)
Data Flow to run after a Work Process Version has been Closed

VersionPostClosing

This dataflow should be able to take actions based on the following package variables that are
set depending on the user’s selections made when creating a new version:

- Profitbase EPM Planner PostDeploymentAction
o RollFwd (*)
o Init (#)
o Nothing (pure copy, nothing to be done)

- (*) Profitbase EPM Planner RollOverDelta
o Number of months to roll forward

(#) Profitbase EPM Planner StoreReferenceDate
o New store reference date

The custom package is responsible for its own initializing and roll forward operations.

If the customization is a module extension (i.e. exists in @object [ModuleExtensions,

setting] .dbobjectName), the WorkbookID column must be updated to reflect the actual
WorkbookID (Ie @0bject [<WorkbookName>] . Id).

If Workbook(s) are to be “go to” workbook options when creating new tasks, they must be
registered in syn_common_workbook in the correct process/version context:

Column Description

WorkbookID The workbookid found as @0bject [<workbookname>] .Id

WorkbookName The default title of the workbook

WorkbookName_EN The English title of the workbook

WorkbookName_NO The Norwegian title of the workbook

MasterWorkbookName The workbook object name as found in the Profitbase InVision designer. This is used for
Process tasks which are defined outside of a versioned context.

ProcessID The current process id as found in [dbo] . [SYS WorkProcessVersions] for
WorkProcessVersionID = '@CurrentWorkProcessVersion|D'

Page 10 of 21
Profitbase Planner Configuration

VersionlD '@CurrentWorkProcessVersionID'
WorkbookURL Same as WorkbookID

Editable True

Versioned True

ApplicationID EPMPlanner

Note that this part is taken care of in the custom extension template but will require some
adaptation. The following dataflow is attached to the custom extension package as a After
Version Deployed dataflow:

v & & Versioning

» | & B EPMPlannerCustomExtensionPostVersionDeployment

It reads the relevant Planner package properties and splits into two control flows depending on
the PostDeploymentAction package property:

TODO Init
Init)

Catch Post Deployment Action
{ Catch Post Deployment Action)

Is Enabled

{ EPMPlanne;

s Enabled

Pattern 2 - Create a new module that will follow Planner’s versioning only

This should be a subset of pattern 1, refer to Actions to be performed post version deployment

Pattern 3 — Customize the transaction pipeline and/or FinanceAll dataflow

The transaction pipeline for the Account, Personnel and Driver based modules can be
customized by adding a sql script that executes prior to (PRE) and/or after (POST) the standard
transaction pipeline of the module.

It is possible to register a custom script per pipeline PRE and/or POST. Scripts registered as
object names as defined in the Profitbase InVisiondesigner which are evaluated to version
specific object ids at run-time.

Page 11 of 21
Profitbase Planner Configuration

Table for registering custom scripts: @Object[CustomPipelineScripts,setting].dbObjectName.
There is no user interface, so content will have to be scripted or input using the Profitbase
InVision designer:

o This object is currently not checked out for edit. Any changes you make,

SCHEMA DATA TIME FRAME FILTERS ROLLOVER TRANSACTION f

== AddRow 9 C Reload Row Limit: | 2000
Pipeline Step Script

AccountPipeline POST MyScript2

AccountPipeline PRE MyScript

Scripts must use context variables:

- @ModuleExtensionID — id defining the module or model

- @DepartmentID — selected filter value (id) in the department filter (123XYZZZYX321
outside of context)

- @DepartmentColumnName * - Column name in wide dimension that represents the
selected filter value, default is DepartmentID (leaf).

- @ActivityID * — selected filter value (id) in the department filter (123XYZZZYX321
outside of context or if dimension is not used)

- @ActivityColumnName * - Column name in wide dimension that represents the selected
filter value, default is ActivitylID (leaf).

- @ProjectID * —selected filter value (id) in the department filter (123XYZZZYX321 outside
of context or if dimension is not used)

- @ProjectColumnName * - Column name in wide dimension that represents the selected
filter value, default is ProjectID (leaf).

*From Planner 5.2.4, with the introduction of multi-department input, the context slice is
dynamic and script must therefore handle situations where context is defined at higher filter
levels, for example @DepartmentColumnName = ‘L2" And @DepartmentID = ‘Norway’ when
pipeline is triggered from a workbook. It is suggested that the script makes use of dimension
slicers that is used to control the context, for example:

The slicer table should be joined into any select that delimits the context.

If the registered script does not exist in current version context, no error message is given as the
custom step is ignored.

Scripts should never be created in EPM Planner package. Should be created in a separate custom
package co-existing with EPM Planner. A template script with variables can be copied from EPM
Planner:

Page 12 of 21
Profitbase Planner Configuration

Home T CustomPipelineScriptTemplate
& This object is currently not checked out for edit. Any changes you make, will not be saved,
QUERY DATASOURCE MARKUP PROPERTIES REFERENCES
i p Beate [ExportScript
Returns data

SQL Expression Macro Expansion

1 -

2 -- Standard pipeline dataflow will provide the following two context varisbles. You will meed to handle calls for specific and out-of-context
3 -

4 -- Script to be registered in @bject[CustomPipelineScripts,setting].doObjectName

5

6 -- Supported pipelines: AccountPipeline | PersomnelPipeline | DriverBasedPipeline | CapExPipeline | LoanPipeline

7

8

a -

10 -- The custom secript should never be placed in the EPM Planner package, create a custom package and place the script(s)
1

12

13 #IF_DESIGN

14 DECLARE @ModuleExtensionID nvarchar(58)

15 DECLARE @DepartmentID nvarchar(5@)

16 HENDIF

17

18 -- Add logic, observe the context varisbles.

19

20

values.

-- Scripts can be registered for execution PRE and/or POST, i.e. at the very start of the pipeline, before standard functions, and at the very end,

The out-of-context value is 123XYZZZVX321

after the standard functions

From Planner 5.4.0 the FinanceAll dataflows can also be customized with PRE and POST scripts

(no parameters).

The FinanceAll dataflows (FinanceAllBaseline and FinanceAllScenario) source transactions from

input modules and executes financial engines producing a plan ledger.

In some cases, it may be desirable to introduce custom logic before the financial engines starts

and after the financial engines finish.

Use cases may be to add data to price list from say a driver-based model before if simulation on
price is required and allocation (non-cash) of cost from admin to production departments after

simulation is finished.

This can be done by adding custom scripts and registering these in the CustomPipelineScripts

table in the same way as for transaction pipelines:

IT ¥530ToV531Post 2 EPM Planner B FinanceAllScenarios
& This object is currently not checked out for edit. Any changes you make, will not be saved.

SCHEMA DATA TIME FRAME FILTERS ROLLOVER TRANSACTION PIPELINE

i @ loaddata ok AddRow 9 Row Limit: | 2000
Pipeline s Step Script
AccountPipeline POST
AccountPipeline PRE

DriverBasedPipeline POST
DriverBasedPipeline PRE
FinancelllBaseline POST
FinanceAllBaseline PRE
FinanceAllScenario POST
FinancelllScenario PRE

PersonnelPipeline POST

The PRE script executes before the start of the first financial engine:

B FctSalaryPipeline

o
L
7]
a
|
o
3
il
5
ru
o]
Il
=]
ek
A
|

LOAD DATA SAVE DATA EXCEL EXPORT DATAPOCL M

Page 13 of 21
Profitbase Planner Configuration

https://support.profitbase.com/solutions/planner/uploads/0675a714eedd07889c744a489b5afbd7/image.png

£T V530ToV531Post G EPM Planner [FinanceAllScenarios [FetSalaryPipeline

G This object is currently not checked out for edit. Any changes you make, will not be saved.

CONFIGURATION MARKUP PROPERTIES REFERENCES

E)Run

=B References [7] Showlogs J Data Flow Properties

ChidfShouldRun
(ChidfShouldRun)

Is Enabled

Log run
(Log)
Is Enabled

™

&8 CustomPipelineScripts FinanceAllBaseline X

Log no run
(Log)

Is Enabled

Truncate
(Sales|C Target)

Is Enabled
L

Is Enabled

7

B pbTransdataStaticSource

Truncate
{ Purchase Target)

Is Enabled
s

The POST script executes after the finish of the last financial engine and prior to the static

feedback loop to the Plan overview workbook and the aggregation of report data:

& V530ToV531Past @ EPM Planner B FinanceAllScenarios B FetSalaryPipeline B CustomPipelineSeripts B

& This object is currently not checked out for edit. Any changes you make, will not be saved.

CONFIGURATION MARKUP PROPERTIES ~ REFERENCES

iprn W

=8 References [7] Showlogs & Data Flow Properties

s Is Enabled Enabled
v v

bied
=

2 &T Reload pb t 2]

—
Is Enabled
v

Tuncate MisclC
(MiscIC Target)

OBDepreciationSource
(MisdIC)

OBDepreciationSource:
Is Enabled

IsEnabled
@

Obsolescence source:
OBDeprecition (Brecute Scriot)
(OBDeprecation)

o W 1s Encbed
M sEnabled

Obsolescence
(Obsolescence)

Shrinkage Source:
(ExecuteSariptl)

Shrinkage

BadDebtNCT Source
(Shrinkage)

(Executescriptz)

BadDebiNCT

(e Bonus Source:

Is Enal M is Enabled
= e Cpo Dz Ot
Eer mm Shatince) Tax Source: Tax
(BrecuteSaripts) ShortTermCash Source. e (ShortTe h) e (Tax)
¢ L (ExecuteSaripts) (ShortTermCash Target) (ExecuteSaripts)
M snabied s Eraed

Is Enabled Is Enabled
v)

Is Enabled

M isEnsbled
v

W isEnabied

ExecCustomSaiptiD POST pbansdatastatic RepotAccounteyMontn
ExecCustomSariptiD POST Reload pbTransdataSiatic ReportAccountByMonin
Is Enabled Is Enabled
v

O Is Enabled
v @

=poriGraphseriesByMor
=portGraphSeriesByMor

Is Enabled
v

icheReportLineByMorts
heReportLineByMonthP!

Is Enabled
v

Pattern 4 — Customize assumptions (lookup) measures for the Driver Based module

The standard assumption table for the driver-based module is found in the Driver based

modelling workbook:

Page 14 of 21

Profitbase Planner Configuration

Models Measure Measure fact data Dimension data

O N s e
*

Product sales
Product sales (ForecastSalesWorkbook) - Product sales Edit.. ' Published
Consulting Input model Assumptions Output Advanced - engine interface

CostOfGoodsSoldPct

Measure Departm. Product Market Activity Project Currency Feb 22 Mar 22
1 CostOfGoodsSoldPct | Alle avdelinger | All Product All Markets | All Activities All Prajects b 67.0 % 67.0
2 CostOfGoodsSoldPct Alle avdelinger Profitways EDM® | All Markets | All Activities | All Projects 4 720% 72.0

Sometimes it may be required to customize the source for assumptions. This can be done by
creating a custom view adhering to the internal format of the standard assumption table and
registering this view as an override in the Base settings table found in the Input Settings and

Administration workbook settingID DriverBasedCustomAssumptionView:

Settings Payroll Settings Setup

Refresh
Account - dimensions Base settings
. Setting ID Value
Account - column selection
1 AccountGroupingMandatory v TRUE
Account - Historic Reference Columns B AccountNetFactar v
Account - deviation columns 3 AccountPeriodsButton » EMAELED
- ActualsDataset|D v | ACTUAL
Personnel - dimensions ~
& AlwaysincludeAlldccounts ¥ FALSE
Personnel - Column setup b DepartmentGroupingMandatory ¥ TRUE
7 istri lepor » | INP
) - DistributedReportiD INPUT
8 DriverBasedCustomAssumptionView » CustomDriverBasedAssumptions
Period filters 9 DnverBasedloadExternalSource ~ MERGE
Input filters 0 DriverBasedPeriodsButton ~ EMAELED
n FCTYearTotalFloating v TRUE
12 IncludeAllowlnputAccountsOnly | FALSE
13 PersonnelloadExternalSource v MERGE

Such a view should never be created in EPM Planner package. Should be created in a separate
custom package co-existing with EPM Planner.

The view will have to be common for all driver-based models, i.e. either you customize or you
don't. However, it's a good idea to combine with standard setting as described below so that
only the assumptions you need to customize are custom.

View need to conform strictly to the format for FctSalesInputAssumptions, including
PBRowldentity. Example view established in custom extension package:

Page 15 of 21
Profitbase Planner Configuration

+ & [EPM Planner Custom Extension

> Custom Input Module Extension

> Wersioning

o
o

» &[] Task
o

Driver based

v

v CustomDriverBasedAssumptions

Rules that apply:

e The custom view can combine the standard assumption table
(@Object[FctSalesInputAssumptions,setting].dbObjectName and custom sql but any one
measure can EITHER have its assumption values from the standard table or custom sql.

* can be used for indicating all as with ranked input. This can be used to avoid the
custom values to explode if for example certain dimensions are not used and the
assumption values apply across all dimension value combinations for that
dimension.

e For any custom assumption values where all values and specific values are used,
PBRowidentity and Pri (rank/specificity) field logic must be used, i.e. more specific
values have higher Pri (rank/specificity) and the different rows for that specific
assumption must have unique PBRowldentity values.

Pattern 5 — use a custom target store for data import

Pattern 6 — use a custom source for data export

Pattern 7 — add custom button/row context menu in standard Planner modules

From Planner 5.4.0, it is possible to enable and configure a custom button and/or a custom row
context menu in modules Account, Personnel, Driver Based and the Plan overview workbook.
The purpose is to enable a Ul integration to custom workbooks and pass the context from the
standard workbook to the custom workbook without “breaking” the standard.

As an example, a custom workbook offering a drill-to-detail of ledger data may be configured as
a custom row context menu receiving contextual information from the appropriate row such as

department, account, project and so on that may be used to filter a custom report.

This is set up using the Profitbase InVision designer in the setting table ModuleExtensions:

Page 16 of 21
Profitbase Planner Configuration

https://support.profitbase.com/solutions/planner/uploads/3a00dc890b5b69884e4ff75f76d82dd1/image.png

CustBtn1Enabled bit -

CustBtn1LlaunchToWorkbookMName rvarchar100) -
CustBtn1Q5P rvarchar100) -
CustRowContextMnu1Enabled bit -

CustRowContextMnulLaunchToWorkbook! nvarchar{100) -
CustRowContextMnu1Q5SP rvarchar100) -

While not a module, it is also supported to add a custom button and a custom row context
menu to the Plan Overview workbook. Details stored in separate columns in the
ModuleExtensions table (NOTE: Row for ModuleExtensionID =
Profitbase.EPM.AccountWorkbook taken into account):

PlanCwverviewCustBtn1Enabled
PlanCverviewCustBtn1LaunchToWorkbookMame
PlanCverviewCustBtn105P
PlanOverviewCustRowContextMnul Enabled
PlanCverviewCustRowContextMnul LaunchToWarkbockMame

PlanOverviewCustRowContexthMnul Q5P

e CustbtnlEnabled - (true | false, default false). If false, the button is hidden

e CustBtnlLaunchToWorkbookName - the workbook name as given in the invision
designer. Planner will evaluate the workbook id based on the version context in which it
is called. The workbook must exist in the same version context as the calling workbook
(e.g. a custom package parallel to the Planner package.

e CustBtn1QSP - an optional part of the query string that may hold context in addition to
the standard context provided by Planner. This must be specified in the form
parameterl=valuel¶meter2=value2 (note the ampersand for separating multiple
custom parameters).

e CustRowContextMnulEnabled (true | false, default false). If false, the row context
menu is inactive.

e CustRowContextMnulLaunchToWorkbookName - the workbook name as given in the
invision designer. Planner will evaluate the workbook id based on the version context in
which it is called. The workbook must exist in the same version context as the calling
workbook (e.g. a custom package parallel to the Planner package.

e CustRowContextMnulQSP - an optional part of the query string that may hold context
in addition to the standard context provided by Planner. This must be specified in the
form parameterl=valuel¶meter2=value2 (note the ampersand for separating
multiple custom parameters).

Context
e Custom button - Department, Project and Activity filter values, the workbook id of the

workbook from which the custom button is clicked and an optional query string context.
Module specific context include the Account filter context is provided for the Account

Page 17 of 21
Profitbase Planner Configuration

module. For Personnel, the Employee filter context is provided. For Driver based, the
Product and Market filter context is provided.

Button is placed:

Forecast = Planner DEVELOPMENT 5.3.1 | Product sale

e Custom row context menu - The row context is provided, i.e. all values of relevant input
dimensional context columns such as DepartmentID, ProjectID, ActivityID,
CPLegalEntitylD and so on. Module specific context include, AccountID for the Account
module, EmployeelD for the Personnel module, ProductID, MarketID and SupplierID for
the driver based module.

e Custom row context menu is available on right-click on Project and Activity dimension
columns of main input fheet. Module specific additions include Account column for the
Account module, Employee column for the Personnel module and Product and Market
columns for the driver-based module.

Titles and translations

The following localization text codes is referenced:

Account module:

Account_CustBtn1
Account_CustBtn1
Account_CustRowCaontextMenul

Account_CustRowContexthMenul

Personnel module:

Personnel_CustBtn1
Personnel_CustBtn1
Personnel_CustRowContext

Personnel_CustRowContext
Driver based module (generic texts):

DriverBased_CustBtn1
DriverBased_CustBtn1
DriverBased_CustRowContexthenul

DriverBased_CustRowContexthenul

Page 18 of 21
Profitbase Planner Configuration

For the custom button, driver-based model-specific texts may be added by adding a localization
of the form <ModuleExtensionID>_CustBtn1 for example MyModel_CustBtnl for a model with
ModuleExtensionID = MyModel.

Note that model-specific texts are not supported for the custom row context menu.

Plan overview:

PlanCweniew_CustBtnl EM
PlanCweniew_CustBtnl MO
PlanCwverview_CustRowContextMenul EM
PlanCwverview_CustRowContextMenul MO

Size and positioning of custom workbook when called from standard modules

The OpenBrowserWindow command is used to open the custom workbooks. It is possible to
control the height, width, left and top adjustments in pixels by setting the following values in the
setting table ModuleExtensions:

For Account, Personnel and Driver based modules:

CustBtn1LlaunchWEBPixelHeight
CustBtn1LlaunchWEPixelWidth
CustBtn1LlaunchWEBPixelLeftAd|
CustBtn1LaunchWBPixelTopad)
CustRowContextMnu1LaunchWEPixelHeight
CustRowContextMnu1LaunchWEPixelWidth
CustRowContextMnulLaunchWEBPixelLeftid)
CustRowContextMnu1LaunchWEPixelTopAd)

For Plan overview:

PlanOverviewCustBtn1 LaunchWEPixelHeight
PlanOverviewCustBtn1 LaunchWEPixelWidth
PlanCverviewCustBtn 1 LaunchWE PixelLeftAd)

PlanOverviewCustBtn1 LaunchWE PixelTopad)
PlanOverviewCustRowContextMnu1LaunchWEPixelHeight

PlanOverviewCustRowContextMnu1LaunchWEBPixelWidth
PlanOverviewCustRowContextMnu1LaunchWEBPixelLeftAd)
PlanOwverviewCustRowContextMnu1LaunchWEBPixelTopAd

The values are pixels and the data type is therefore integer.

Page 19 of 21
Profitbase Planner Configuration

Communication back to caller

The workbookID of the caller is part of the query string to the custom workbook as the
“MessageBackTo” variable. This value can be stored in a workbook variable in the custom
workbook like this:

@Var [MessageBackTo] = @Var[QSP:: MessageBackTo];

A SendMessage event may be issued by the custom workbook to signal to the calling
module/workbook to refresh.

The Plan overview workbook (InputReportWorkbook) has a “RefreshSummary” message
received event that refreshes the summary page.

The Account, Personnel and Driver based modules (AccountWorkbook, PersonnelWorkbook and
DriverBasedWorkbook) has an “RefreshinputPage” message received event that refreshed the

main input page.

Example of a SendMessage instruction back to the calling module:

ConfigureMessage (@Var [MessageBackTo], SYS.CurrentUserName, "RefreshInputPage", '');

Pattern 8 — import transactional plan data from an external source.

In some cases plan data from external sources need to be included in the plan without involving
any input, i.e. to be imported as transactional data to the plan.

In EPM Planner, the transaction store @Object[pbTransdataSourceCM,store].dbObjectName can
be used for this.

Data should be identified by a ModuleExtensionlID.
Use the following pattern:

Set up a standard Data Import job to EPM Datamart destination store
pbTransdataSourceCMExternal (identified by synonym
SYN_Datamart_pbTransdataSourceCMExternal).

This will import the data to EPM Datamart.

To import the data to an EPM Planner version, create an Operation that contains the following
sql script steps:

1. ImportFrompbTransdataSourceCMExternal
Parameter: @ModuleExtensionID, @DepartmentID = 123XYZZZYX321
2. Reload pbTransdataPLSourceCM
Parameters: @ModuleExtensionID, @DepartmentID = 123XYZZZYX321,
@SYS_OriginID = 123XYZZZYX321
3. Reload pbTransdataPLSourceAFP from pbTransdataPLSourceCM (optional)
Parameters: @ModuleExtensionID, @DepartmentID = 123XYZZZYX321

Page 20 of 21
Profitbase Planner Configuration

Scripts have parameters that must be set. Note that when adding parameter values to the
Operation step, no quotes should be used as shown in the examples abov.

Note that @ModuleExtensionID should always be set to identify the set of data imported.
Parameter value 123XYZZZYX321 means all.

For a description of the various data fields and the requirements related to the fields, please
refer to Create custom financial transactions

Data Architecture and Extensions

When creating extensions you need to know where to find data and where to put data and using
sources and targets that will be present and most stable over version upgrades. The picture
below show the main dataflow in Profitbase Planner.

This presentation contains figures that show how the integration describe above will connect to
the rest of Planner.

Profitbase Planner Architecture.pptx

Recommendation summary:

Use pbTransdataSourceCM when creating and inserting finance source transactions.

Use pbTransdataPL when presenting Profit & Loss information — typically in workbook report.
Use ReportAccountByMonth whenever you need to do postprocessing such as allocations and
redistribution for reporting purposes. Use extract, process and present fi possible. Avoid doing
deletes. Remember that “Finance All” will replace the total content.

Using table and views — try to use tables/views with SYN or CPV.

For dimensions there will be a shared dimension in datamart and a local dimension in versioned
solution. Access these using @Object[Dimension, Dimension].DbObjectName to get the local

and SYN_Dimension to get the shared dimension.

Avoid using other tables and views. If you have to: It is recommended to use a view as an
interface to protect the implementation against changes and help document this dependency.

It is important to minimize external reference points to minimize risk that an upgrade will break
compatibility.

Be aware of the content in this document which will be updated and extended with new
patterns.

Page 21 of 21
Profitbase Planner Configuration

https://profitbase.sharepoint.com/:p:/s/FRSv2/EazLHPha5ztKjTKhBmx4DZABVlHQmzACIklAqaH49pQGeQ?e=x2CKhc

